Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters.

نویسندگان

  • Arash Ahmadivand
  • Nezih Pala
  • Durdu Ö Güney
چکیده

A four-member homogenous quadrumer composed of silver core-shell nanostructures is tailored to enhance photothermal heat generation efficiency in sub-nanosecond time scale. Calculating the plasmonic and photothermal responses of metallic cluster, we show that it is possible to achieve thermal heat flux generation of 64.7 μW.cm-2 and temperature changes in the range of ΔT = 150 K, using Fano resonant effect. Photothermal heat generation efficiency is even further enhanced by adding carbon nanospheres to the offset gap between particles and obtained thermal heat flux generation of 93.3 μW.cm-2 and temperature increase of ΔT = 172 K. It is also shown that placement of dielectric spheres gives rise to arise collective magnetic dark plasmon modes that improves the quality of the observed Fano resonances. The presented data attests the superior performance of the proposed metallodielectric structures to utilize in practical tumor and cancer therapies and drug delivery applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman enhancement factor of a single tunable nanoplasmonic resonator.

We have developed a novel technique to precisely determine the Raman enhancement factor in single nanoplasmonic resonators (TNPRs). TNPRs are lithographically defined metallodielectric nanoparticles composed of two silver disks stacked vertically, separated by a silica layer. At resonance, the local electromagnetic fields are enhanced at the TNPR surface, making it an ideal surface-enhanced Ram...

متن کامل

Heat Transfer Enhancement of Al2O3–H2O Nanofluid Free Convection in Two-Phase Flow with Internal Heat Generation Using Two Dimensional Lattice Boltzmann Method

A two-phase lattice Boltzmann model considering the interaction forces of nanofluid has been developed in this paper. It is applied to investigate the flow and natural convection heat transfer of Al2O3–H2O nanofluid in an enclosure containing internal heat generation. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann metho...

متن کامل

Enhancement Performance New Generation of CPU Cooling System Using Water-AL2O3 Nanofluid

By increase in the power of computer systems and enhanced power of the components and their temperature, including the central processing unit (CPU), cooling just by the air is not effective and there is need for more powerful systems to cool down and increase the power of the cooling system. In this article simulation of the heat exchanger material of the fluid cooling system has been studied ...

متن کامل

A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging

As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yi...

متن کامل

Generation of isolated attosecond extreme ultraviolet pulses employing nanoplasmonic field enhancement: optimization of coupled ellipsoids

The production of extreme ultraviolet (XUV) radiation via nanoplasmonic field-enhanced high-harmonic generation (HHG) in gold nanostructures at MHz repetition rates is investigated theoretically in this paper. Analytical and numerical calculations are employed and compared in order to determine the plasmonic fields in gold ellipsoidal nanoparticles. The comparison indicates that numerical calcu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2015